BPC-157 Overview
Purchase Peptides
Adipotide (FTPP) 10mg
AICAR 50mg
AOD9604 6mg
ARA-290 16mg
Bronchogen 20mg
BPC 157 5mg
BPC 157 10mg
B7-33 6mg
Cagrilintide 10mg
Cardiogen 20mg
Cartalax 20mg
Chonluten 20mg
CJC-1295 DAC 2mg
CJC-1295 DAC 5mg
Cortagen 20mg
DSIP 5mg
Epithalon (Epitalon) 20mg
BPC 157 500mcg (60 Capsules)
BPC-157 is a Penta decapeptide (15 amino acids in length) derivative of the much larger, naturally occurring protein known as body protection compound or BPC. The original BPC peptide was isolated from human stomach contents where it is thought to play an important role in maintaining the integrity of the stomach wall against the erosive effects of stomach acid. Research on the protein revealed that the majority of its tissue-healing effects are contained within a small 15-amino-acid section that is now referred to as BPC-157. This smaller fragment is easier to produce synthetically and has become of interest in research settings.
BPC-157 has garnered a great deal of research setting because its healing abilities extend well beyond the lining of the stomach. Studies in animal models indicates that BP-157 can enhanced blood vessel formation (angiogenesis), promote wound healing, stimulate collagen synthesis, modulate the inflammatory response, and protect against oxidative stress. The peptide has shown benefits in animal models of inflammatory bowel disease, Gl ulcers, musculoskeletal injury, heart damage, eye injury, and even neurological injury.
BPC-157 can be administered via SubQ admin or orally for research with lab animals. The oral bioavailability of BPC-157 is quite high. Though most research featuring oral administration of BPC-157 has focused on the peptide’s effects in the Gl system, it can be absorbed and provide impact in other tissues. Interest in the oral benefits of BPC-157 has steadily increased given the therapeutic potential of the peptide and the rising incidences of both inflammatory bowel disease and heart disease.
BPC-157: Research
BPC-157: Stability and Bioavailability
One of the major factors that interests researchers in BPC-157 is its stability in the Gl tract. Most medications need to be contained in pills or coated in various ways to allow them to survive the harsh environment of the stomach. This is not the case with BPC-157. While the peptide can be placed in capsules for easy research administration, such precautions are not necessary because the peptide is exceptionally stable in the Gl tract. As a result of this stability, BPC-157 can be administered in a variety of ways including dissolving it in water or mixing it with food. This flexibility makes BPC-157 easy to work with in animal models.
BPC-157: Muscle and Tendon Healing
One of the earliest studies on BPC-157 looked at tendon and ligament healing in rat models. Tendons and ligaments, especially ligaments, are notoriously slow to heal due to their poor blood supply and relative lack of stem cells. Tendons and ligaments not only heal slowly as a result of these factors, they often heal in a manner that leaves them weaker than they were prior to injury. Low stem cell activity and limited blood supply both lead to decreased levels of remodeling following initial injury repair. Remodeling in wound healing is necessary to provide structural integrity and to align maximum tissue strength with highest stress loads. Limitations in this step mean weaker tissue strength and higher levels of scarring. When BPC-157 is administered to rats following experimental tendon injury, they not only show faster rates of initial healing, but also display higher levels of remodeling and subsequent improvements in tendon strength as a result[1]. These findings have led to high levels of interest in the role that BPC-157 might play in promoting tendon and ligament injury[2].
What has been especially interesting about animal trials of BPC-157 in muscle and tendon injury is the improved functional outcomes that have been observed. Researchers have seen improved clinical outcomes in rats administered BPC-157. These improved outcomes include factors like increased muscle motor function, decreased levels of joint contracture, and better preservation of walking patterns when compared to controls.
What has been especially interesting about animal trials of BPC-157 in muscle and tendon injury is the improved functional outcomes that have been observed. Researchers have seen improved clinical outcomes in rats administered BPC-157. These improved outcomes include factors like increased muscle motor function, decreased levels of joint contracture, and better preservation of walking patterns when compared to controls.
These findings appear to directly correlate with the ability of BPC-157 to increase tendon outgrowth and cell survival, which leads to improvements in the microscopic structure of tendons and ligaments that improves functional outcomes[3]. In other words, the ability of BPC-157 to promote tissue remodeling following healing directly translates into measurable improvements in function.
The major way in which BPC-157 improves muscle, tendon, and ligament healing is through an increase in the expression of growth hormone receptors on fibroblasts. Several growth factors are crucial in the healing process. Notable among them are insulin-like growth factor, platelet-derived growth factor, transforming growth factor-ẞ, basic fibroblast growth factor, and vascular endothelial growth factor. BPC-157 appears to modulate levels to all of these growth factors to achieve optimal outcomes in healing, but its major impact appears to be on natural growth hormone signaling. Research shows that growth hormone can enhance tissue regeneration and cell proliferation, particularly in skeletal muscle and bone. Growth hormone also promotes collagen secretion. Its effects
are mediated either directly through the activation of tyrosine kinase or indirectly via the induction of insulin-like growth factor. These effects are controlled by binding to the growth hormone receptor on the cell membrane and subsequent changes in DNA expression patterns. BPC 157 has been shown to increase growth hormone receptor expression in tendon fibroblasts, helping to concentrate the benefits of growth hormone precisely where they are needed most. This, of course, is superior to systemic growth hormone administration, which has also been shown to enhance wound healing. The increase in growth hormone receptor expression means a local increase in the effects of growth hormone without systemic side effects like pathological long-bone growth [4]. BPC-157 effectively concentrates that activity of growth hormone thus maximizing benefit and reducing side effects.
BPC-157: Heart Muscle
Heart muscle is fundamentally different from skeletal muscle in several ways, but the wound healing processes share similarities. Researchers have therefore explored whether the benefits of BPC-157 can be extended to the heart. Studies in mice reveal that BPC 157 therapy has a complex effect on heart function. This peptide has been observed to effectively counteract chronic heart failure, normalize elevated endothelin levels, and reduce the long-term effects that occur following myocardial infarction. BPC-157 facilitates recovery by activating collateral pathways to compensate for vascular failure and has demonstrated both preventative and therapeutic effects. Notably, in models of lithium-induced heart muscle weakness, BPC 157 therapy led to a swift recovery of cardiac function alongside the alleviation of muscle weakness.
BPC-157 also appears to be effective against the early stages of multiorgan failure that occur due to heart attack and thus may offer insight into early recovery intervention as multiorgan failure following heart attack leads to a range of severe issues including hypertension, brain swelling, and widespread thrombosis (clot formation). Furthermore, BPC 157 has proven effective in countering various types of arrhythmias in animal models. This includes arrhythmias caused by digitalis overdose, hyperkalemia, hypokalemia, succinylcholine, bupivacaine, lidocaine, neuroleptics, and severe intoxication. It has also shown potential in addressing prolonged QTc intervals and other arrhythmias associated with pulmonary hypertension[5]. These findings all indicate that
BPC-157 has a host of beneficial effects in the heart and may be useful not just in the treatment of acute cardiac issues, but in the prevention of cardiac maladies as well.
BPC-157: Wound Healing
BPC 157 is able to speed wound healing because it helps to restore blood flow to damaged tissues. Research shows that BPC 157 also increases the rate of vascular running, which refers to blood vessels growing toward an area of injury [6]. Beyond promoting blood vessel growth, BPC-157 enhances fibroblast activity. Fibroblasts play a crucial role in the repair process, as noted above, by synthesizing extracellular matrix (ECM) proteins, which form the structural framework for tissue repair. By increasing the migration and proliferation of fibroblasts to the site of injury, BPC 157 accelerates the initial phases of wound healing. This helps to quickly establish a scaffold of ECM, which is essential for tissue regeneration and repair. The peptide’s effects on blood vessel growth further support this process by improving oxygen and nutrient supply to the damaged tissue, creating a more favorable environment for healing. [7].
BPC 157 is so effective in improving rates of wound repair that it has been investigated in fistula healing. Like tendons, fistulas are notoriously difficult to treat. The average fistula takes more than two and a half years to heal, even with everything that modern medicine has to throw at wound repair. With BPC 157, rates of healing in animal models are reduced to less than a month[8].
Another area in which BPC-157 has been tested is in the setting of chemical burns. Chemical burns tend to penetrate deeper than thermal burns, but cover a smaller area of the body. Treatment options for this type of burn are also more limited and thus there is a push to find solutions. Research on rat models of alkali chemical burns reveals that BPC-157 can accelerate wound closure by increasing rates of granulation tissue formation, collagen deposition, blood vessel formation, and dermal remodeling. In other words, BPC-157 seems to promote the entire tissue regeneration process, helping the body to initiate healing and then progress through the various stages of healing at a faster rate. In these studies, BPC-157 was shown to work, in part, by increasing levels of vascular endothelial growth factor (VEGF) and altering a number of DNA expression pathways that control gene expression patterns. Pathways that were found to be altered by BPC-157 include ERK1/2 and its downstream targets that regulate things like cell growth, cell migration, and angiogenesis [7].
BPC-157: Central Nervous System
While much of the research around BPC-157 has focused on its benefits in the Gl tract and musculoskeletal system, the connection between the gut and brain has led researchers to look at how BPC-157 may play a role in the central nervous system.
In rat models of stroke induced by blockage of the carotid arteries, BPC-157 was able to reduce damage to neurons. This, in turn, was manifest as improvements in memory, locomotion, and coordination as compared to control animals. In other words, BPC-157 appears to counteract the negative outcomes associated with reduced blood and oxygen supply to the brain. This benefit appears to be mediated, at least in part, by an upregulation in the nitric oxide system[9]. This system, in particular, is sensitive to levels of L-arginine in the body and helps to improve blood supply by dilating arteries[10].
BPC-157: Eye Health
The eyes are often, and accurately, considered to be part of the central nervous system.
BPC-157: Eye Health
The eyes are often, and accurately, considered to be part of the central nervous system. That said, they are also a unique element of anatomy that deserve their own mention, in part because there are diseases that are unique to the eyes that affect no other part of the body. Given the ability of BPC-157 to act in the central nervous system, it should come as no surprise that it has shown action in the eyes as well. In particular, BPC-157 has been shown to reverse glaucoma in rats, helping to restore intraocular pressure, recover pupil function, and maintain the health and integrity of the retina [11]. This is no small matter as glaucoma affects more than 64 million people world-wide and is the second leading cause of blindness in the United States.
Rats treated with BPC 157 display normal pupil diameter, well-preserved ganglion cells and optic nerve structure, as well as a healthy fundus. The retinal and choroidal blood vessels, as well as the optic nerve, appeared normal. Key symptoms, such as elevated intraocular pressure, dilated pupils, degeneration of retinal ganglion cells, excavation of the optic nerve head, thinning of the optic nerve, severe irregularities in retinal vessels, faint choroidal vessels, and significant atrophy of the optic nerve disc were all
Sarah Knox | –
Energy levels are up, and I’m starting to see some definition. It’s pricey, but it works.
David R. Cole | –
I feel stronger and more motivated. Great for body composition.
Ashley Stevens | –
Noticed improved mood and metabolism after just a week . Impressed so far.
Kimberly Vaughn –
Healed my nagging knee injury in record time. This stuff is magic
Trevor King | –
I use it for post-gym recovery—huge difference. Soreness is way down.
Michael Hanley –
Started using for a torn ligament. Healing seems faster and pain is less
Cassandra Reed –
Affordable compared to injections and works surprisingly well